Constructing Uncertainty Sets for Robust Linear Optimization

نویسندگان

  • Dimitris Bertsimas
  • David B. Brown
چکیده

In this paper, we propose a methodology for constructing uncertainty sets within the framework of robust optimization for linear optimization problems with uncertain parameters. Our approach relies on decision-maker risk preferences. Specifically, we utilize the theory of coherent risk measures initiated by Artzner et al. [3], and show that such risk measures, in conjunction with the support of the uncertain parameters, are equivalent to explicit uncertainty sets for robust optimization. We also explore the structure of these sets. In particular, we study a class of coherent risk measures, called spectral risk measures, which give rise to polyhedral uncertainty sets of a very specific structure which is tractable in the context of robust optimization. In the case of discrete distributions with rational probabilities, which is useful in practical settings when we are sampling from data, we show that the class of all spectral risk measures (and their corresponding polyhedral sets) are finitely generated. A subclass of the spectral measures corresponds to polyhedral uncertainty sets symmetric through the sample mean. We show that this subclass is also finitely generated and can be used to find inner approximations to arbitrary, polyhedral uncertainty sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primal and dual robust counterparts of uncertain linear programs: an application to portfolio selection

This paper proposes a family of robust counterpart for uncertain linear programs (LP) which is obtained for a general definition of the uncertainty region. The relationship between uncertainty sets using norm bod-ies and their corresponding robust counterparts defined by dual norms is presented. Those properties lead us to characterize primal and dual robust counterparts. The researchers show t...

متن کامل

Modeling of Epistemic Uncertainty in Reliability Analysis of Structures Using a Robust Genetic Algorithm

In this paper the fuzzy structural reliability index was determined through modeling epistemic uncertainty arising from ambiguity in statistical parameters of random variables. The First Order Reliability Method (FORM) has been used and a robust genetic algorithm in the alpha level optimization method has been proposed for the determination of the fuzzy reliability index. The sensitivity level ...

متن کامل

Event-driven and Attribute-driven Robustness

Over five decades have passed since the first wave of robust optimization studies conducted by Soyster and Falk. It is outstanding that real-life applications of robust optimization are still swept aside; there is much more potential for investigating the exact nature of uncertainties to obtain intelligent robust models. For this purpose, in this study, we investigate a more refined description...

متن کامل

A Tractable Approach for designing Piecewise Affine Policies in Dynamic Robust Optimization

We consider the problem of designing piecewise affine policies for two-stage adjustable robust linear optimization problems under right hand side uncertainty. It is well known that a piecewise affine policy is optimal although the number of pieces can be exponentially large. A significant challenge in designing a practical piecewise affine policy is constructing good pieces of the uncertainty s...

متن کامل

A Robust Optimization Perspective on Stochastic Programming

In this paper, we introduce an approach for constructing uncertainty sets for robust optimization using new deviation measures for random variables termed the forward and backward deviations. These deviation measures capture distributional asymmetry and lead to better approximations of chance constraints. Using a linear decision rule, we also propose a tractable approximation approach for solvi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Operations Research

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2009